Web Pre-fetching Schemes using Machine Learning for Mobile Cloud Computing
نویسندگان
چکیده
Pre-fetching is one of the technologies used in reducing latency on network traffic on the Internet. We propose this technology to utilise Mobile Cloud Computing (MCC) environment to handle latency issues in context of data management. However, overaggressive use of the pre-fetching technique causes overhead and slows down the system performance since pre-fetching the wrong objects data wastes the storage capacity of a mobile device. Many studies have been using Machine Learning (ML) to solve such issues. However, in MCC environment, the pre-fetching using ML is not widely used. Therefore, this research aims to implement ML techniques to classify the web objects that require decision rules. These decision rules are generated using few ML algorithms such as J48, Random Tree (RT), Naive Bayes (NB) and Rough Set (RS).These rules represent the characteristics of the input data accordingly. The experimental results reveal that J48 performs well in classifying the web objects for all three different datasets with testing accuracy of 95.49%, 98.28% and 97.9% for the UTM blog data, IRCache, and Proxy Cloud Computing (CC) datasets respectively. It shows that J48 algorithm is capable to handle better cloud data management with good recommendation to users with or without the cloud storage.
منابع مشابه
Study of Combined Web Pre-fetching with Web Caching Based on Machine Learning Technique
High bandwidth utilization, reduced load on the origin server, high access speed are possible by combining Web caching and pre-fetching techniques. Pre-fetching is the process of fetching few Web pages in advance which will be assumed to be needed by the user in near future and those pages are cached in the memory. Lots of work has been reported for caching and pre-fetching of Web pages in the ...
متن کاملDoS-Resistant Attribute-Based Encryption in Mobile Cloud Computing with Revocation
Security and privacy are very important challenges for outsourced private data over cloud storages. By taking Attribute-Based Encryption (ABE) for Access Control (AC) purpose we use fine-grained AC over cloud storage. In this paper, we extend previous Ciphertext Policy ABE (CP-ABE) schemes especially for mobile and resource-constrained devices in a cloud computing environment in two aspects, a ...
متن کاملCloud Computing; A New Approach to Learning and Learning
Introduction: The cloud computing and services, as a technological solution for developing educational services, can accelerate the provision and expansion of these highly useful services. This study intended to provide an overall picture of practical areas of learning services based on cloud computing teaching and learning equipment. Methods: This was a theoretical hybrid research study in whi...
متن کاملبررسی تأثیرات رایانش ابری بر یادگیری الکترونیکی
In the world of training, online training is introduced as a modern model of training services. Cloud computing is a modern technology which is provided software, infrastructure and platform as internet. Also, online training is introduced as a modern model of training services on the web. In this research, the impact of cloud computing on e-learning on the case of Mehralborz online university ...
متن کاملAssessment Methodology for Anomaly-Based Intrusion Detection in Cloud Computing
Cloud computing has become an attractive target for attackers as the mainstream technologies in the cloud, such as the virtualization and multitenancy, permit multiple users to utilize the same physical resource, thereby posing the so-called problem of internal facing security. Moreover, the traditional network-based intrusion detection systems (IDSs) are ineffective to be deployed in the cloud...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017